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Starting with the usual Hilbert  space formulation of  quantum mechanics we 
construct a mathematical  model which proves that  the set of axioms for the 
theoretical description of single microsystems developed by Ludwig is free 
of  contradictions and admits of nontrivial solutions. 

1. INTRODUCTION 

Since the discovery of the statistical interpretation of quantum mechanics 
several attempts were made to include the description of single quantum 
systems into the mathematical picture of quantum theory. [Cf. Everett (1957), 
Piron (1972), Ludwig (1975, 1977), and Davidon (1977).] These attempts were 
made to discuss or even "solve" epistemological problems of quantum 
mechanics. 

In the present paper we are concerned with Ludwig's approach to this 
problem (1975, 1977). Ludwig developed a pretheory to quantum mechanics 
in which, analogous to the sample space of Kolmogorov's probability theory, 
a set of microsystems is introduced. Ludwig understands this pretheory as a 
tool to bridge the gap between experiments and the usual formalism of 
quantum mechanics. Moreover, it is used to discuss the misunderstandings 
and paradoxes that arise in the interpretation of quantum mechanics on a 
mathematical footing. 

Since this pretheory is introduced axiomaticaUy the question arises 
whether the set of axioms admits of nontrivial solutions, i.e., whether the 
probability functions considered in this pretheory are compatible with 
Hilbert space models of dimension greater than 1. 

1 Dedicated to Professor Giinther Ludwig on the occasion of his 60th birthday. 
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To construct such a model for the pretheory in question we consider an 
irreducible quantum mechanical system, i.e., a system without superselection 
rules, which is described in an infinite dimensional separable Hilbert space H 
by the set of  ensembles 

K =  { W  e B ( H ) / W *  = W, W >~ 0, Tr W =  1} 

and the set of effects 

L =  { F e B ( H ) / F *  = F,O <~ F <~ 1} 

Tr (WF)  is the probability of measuring the effect F in the ensemble W. 
In the sequel we construct a countable set M of"microsystems" equipped 

with a structure (Q, Ro, R), where Q c ~ ( M )  is a system of preparing 
procedures and Ro ~ ~ ( M )  and R ~ ~ ( M )  are systems of recording 
methods and procedures, respectively. In addition we specify mappings 

: Q' ~ K where Q' = Q\{ ~ } and ~b: o~ ---> L 

such that the axioms postulated by Ludwig are fulfilled. [o~ = 
{(b0, b)/bo ~ Ro, b e R, bo ~ b} is the set of effect procedures.] 

Though M equipped with this structure could be called a set of micro- 
systems, in fact, only if the preparing and effect procedures are connected 
with the reality by mapping principles will we use the expression "micro- 
systems," preparing and recording microsystems in this mathematical model. 
Since we do not intend to repeat the definitions and semantics of Ludwig's 
description of single microsystems, we must hope that the usage of these 
physical expressions together with the mathematical construction of the model 
will also be sufficient to elucidate the main features of Ludwig's scheme. The 
mathematical model carries realistic features insofar as it fulfills the axioms 
which are postulated for the mathematical picture. 

2. CONSTRUCTION OF THE SET OF MICROSYSTEMS 

At the beginning we select a countable set Lc c L of effects as images of 
effect procedures under the mapping ~b to be constructed, q, has to be chosen 
such that all observables can be approximated in a certain sense by observ- 
ables consisting of effects of Lc. In view of this approximation procedure of 
Ludwig (in preparation), it is sufficient to consider finite observables. A 
finite observable is a finite Boolean algebra 52 endowed with an effective 
L-valued measure which assumes the value 1 e L on the unit element of the 
Boolean algebra. Every finite Boolean algebra is atomic and is determined 
uniquely up to isomorphism by the number n of its atoms ~1 . . . . .  a~. The L- 
valued measure F satisfies ~P=I F(cr~) = 1. On the other hand, for each 
finite subset {G}~=I ...... c L with F~ ~ 0, ~P=I Fi = 1, there is a Boolean 
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algebra v , ,  unique up to isomorphism, endowed with an effective L-valued 
measure which assumes the values F1 . . . .  , F~ on the set of  atoms of  Z~. 
Hence a finite observable can be characterized by a subset S = (F~}~ = 1 ...... c L 
with ~ =  ~ F~ = 1. (F~ = F~ for i ~ k is admitted.) Let Mo be ~ e  set of  all 
such subsets of  L. 

L e m m a  1: There is a countable subset Lc c L such that for S ~ Mo and a 
a*-neighborhood U of 0 there is S '  ~ Mo with S '  c Lc and F~ - F~' ~ U for 
a l l / =  1, . . ., n (Fi ~ S, F~ ~ S ' ) .  

Of course, it can be assumed that F = ~ F~ eLc for I c {1 . . . .  , n} if 
F1,. �9 F~ ~ Lc and ~ =  1 F~ = 1. 

The proof  of  this lemma is given in the Appendix. 
Now, let Mo~ = {S  ~ M o / S  c LI).  For S = {F1, . . . ,  F~} we consider a 

representation of the Boolean algebra Z s with n atoms in N such that every 
a tom is an infinite subset of  N. (For example, cr~ = {i + (m - 1)n/m ~ N} for 
the atoms cr~ of  Y's.) A pair (S, ~r), with g ~ Zs, v = [,.J~ ~,  I ~ {1 . . . . .  n}, 
and ~a . . . . .  ~ being the atoms of  Zs, determines an effect 

F ( S ,  or) = ~ F~ (2.1) 

For  S fixed the mapping Zs ~ ~ ~ F(S, ~) is an observable which assumes the 
values F~ ~ S on the set of  atoms of  Zs. 

The discussion of recording methods and procedures that correspond to 
these observables will be postponed after the introduction of the set of  
preparing procedures. 

We choose a countable dense subset Kc = { W~}~ = 1 .... ~ K of ensembles 
as images of  preparing procedures under the mapping ~o to be constructed. 
We consider finite sets of  pairs {(vz, h~) . . . .  , (v,, h,)}, v~ ~ N, A~, rational 
numbers of  the semiclosed interval (0, 1] with ~ =  ~ A, = 1. The family of  
these finite sets may be denoted by Me, where Mr  is denumerable. T = 
{(v~, A~) . . . . .  (v,, A,)}~Me characterizes a so-called preparator,  i.e., a 
preparing apparatus equipped with signals i--- 1 . . . . .  n never occurring 
simultaneously such that micro-objects prepared by T can be selected accord- 
ing to the signals. The signal i occurs with the probability A~ and the corre- 
spondingly selected micro-objects are described by the ensemble W w Hence a 
pair (T, r), T ~  Mr,  r = { l , . . . ,  nr}, characterizes a preparing procedure in 
which the micro-objects of  the preparator T are selected according to the 
occurrence of  the signals z = {1 . . . . .  nr}, and the corresponding ensemble is 

W ( T ,  ~) = A~ ~ )qW~, for �9 ~ q~ (2.2) 

Now, given v ~ N and S e Mo~ there is a greatest element ~r(v, S) ~ Y's such that 
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Tr [W~F(S, a(v, S))] = 0. Since F(S, N) = 1 we have a(v, S) # N. The 
countable set M of microsystems is defined 

M = [,.J [{(T, i, S)} x a*(v~, S)I (2.3) 
TeM~ 

le{l ..... nT} 
S~Mor 

where * denotes the complementation in N and the index v~ is determined by 

T = {(vl, al) . . . .  , (v~r, a~T)}. 
M is a subset of Mp x N • Mo~ W N. According to the above con- 

siderations the first two factors label the preparing procedure by which the 
micro-object considered is prepared. The third factor labels the recording 
method and the last one the recording procedure applied to the micro-object. 
This will be explained more explicitly in Section 3. 

By the introduction of  a*(v, S) we allow sets of  microsystems to be 
empty if the corresponding probabilities are zero. 

3. THE CONSTRUCTION OF PREPARING AND 
RECORDING PROCEDURES AND 

THE DISCUSSION OF LUDWIG'S  AXIOMS 

Proceeding along the ideas outlined at the end of Section 2 we define the 
set of  preparing procedures as follows: 

S~Moc 

[{(T, i, S)} x a*(v,, S ) ] /  
1 

T = {(v,, h , ) , . . . ,  (v,r, A,~)}, r c {1 . . . . .  nr}} 

and ~0(ar,0 = W(T, r) for ar.~ r ~ .  
Q is a system of selection procedures [see Ludwig (1975, 1977)] since for 

T ~ T' we have ar.~ n ar,,e = ~ and aT,~ Ca ar.e = ar.m~, and ara\ar,~, = 
aT,~W for r '  c r. For T = {(vl, A1),.. . ,  (v~, h~)} and r, r '  c {1 . . . . .  n} with 
r = r '  we define )tO(aT., aT,,,) = (~v~*" ;~v)(~* A~)-1 for r '  # ~ .  AQ(aT,,, aT,,') 
fulfills all axioms for a relative probability [AS 1 of Ludwig (1977)] and thus 
Q endowed with AQ is a system of statistical selection procedures [Axiom APS 
1 of  Ludwig (1977)]. 

A direct mixture of preparing procedures a' and a" corresponds to a 
preparing apparatus which mixes by chance micro-objects prepared by 
apparatus corresponding to the procedures a' and a". For  aT,,,,, ar,,,,, e Q, 
and a rational number ~ e (0, 1), there is a direct mixture at.,  e Q of aT ,~, and 
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ar",~" with a ratio ~. Namely, let 

~r = {(vl, hi) . . . . .  (v,, +,,, a,,+,,)} 
= {(v~, ~A~),..., (v~,, ~A',), (v~, (1 - c0A~),... , (m", (1 - ~)A~,)} 

and let ~- be the set of indices of{1 . . . . .  n' + n"} corresponding to ~-' u C. We 
have ~o(aT.0 = ~s0(aT, ~,) + (1 -- ~)~O(aT,~,). 

We shall now discuss the recording of micro-objects. For  an observable 
S E Moo we consider a recording method 

bos = U [{(T, i, S)} x a*(v,, S)] 
T~M~ 

te(1,...,nT) 

In addition to the set Ro of all these recording methods we define the set of 
recording procedures 

R = ~bs,~ = U [{(T, i, S)} x (o n ~*(v,, S))]/SE Moo, ~ Z s ~  
TeM~ ) 

le{1,...,nz} 

Hence in this model an effect procedure f = (bos, bs,~) is determined by an 
observable S e Moo and ~ ~ Zs. let 

~(bos, bs.~) = F(S, ~) 

[see equation (2.1)]. 
Ro is a trivial system of statistical selection procedures such that 

b0 r b~ implies bo n b~ = z .  Thus in our model we dispensed with the 
possibility to construct finer or coarser registration procedures relative to a 
given one. Correspondingly, no direct mixtures of  recording methods are 
considered which, however, could easily be provided analogous to direct 
mixtures of preparing procedures. This feature is certainly not relevant for 
the structure of  quantum mechanics. 

R is a system of section procedures such that the sets R(b0)= 
{b ~ R/b ~ bo} are Boolean algebras for all bo ~ Ro and bo n b[ = ~ for 
bo ~ bo. Moreover, Ro, R fulfill axiom APS 4 of  Ludwig (1977). Hence 
axioms APS 1 , . . . ,  4 are satisfied. 

In addition, lemma 1 shows that all observables can be measured 
approximately in the following sense: For a finite observable F: Z ---> L and a 
~*-neighborhood U of 0 there is a recording method bo E Ro and an isomor- 
phism i: Z ~ R(bo) such that [F(~) - ~b(bo, i(~))] e U for all ~ ~ Z. 

The set of microsystems prepared by aT-~ e Q and recorded by the 
method bos is 

aT., n bo,s = [,.) [((T, i, S)} x a*(v,, S)] 
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at,, n bos is not empty if ar,, # ~ and bos # ~ [Axiom APS 5 of Ludwig 
(1977)]. 

By the definition 

/z(ar,, (bos, bso)) = Tr (q~(ar,,), ~b(bos, bs~)) = Tr (W(T, z).F(S, a)) 

a function/~ is defined on Q' • ~" (Q' = Q\{ ~}) such that the conditions (1), 
(4), and (5) of Ludwig (1977), p. 199, are obviously satisfied. Condition (7) 
reads ara c~ bs,, = ~ is equivalent to 

tz(ar,. (bos, bs.)) = 0 for ar,~ e Q' and (bos, bs~) e ,~  

Since 

we have 

ar,, n b s ,  = (,,.,J [{(T, i, S)} x (a 0 a*(i, S))] 

aT.~ ~ bs~ = ~ iff a n a*(v~, S) = ~ for all i e r 
iff Tr (W~,. F(S, a)) = 0 for all i e r 

[Thus the introduction of ~*(v, S) in (2.3) assures that the set of microsystems 
prepared by a procedure corresponding to W, and recorded by a procedure 
corresponding to F(S, e) is indeed empty if Tr (W~. F(S, o)) = 0.1 

According to the theorem quoted by Ludwig (1977) on p. 199, conditions 
(1), (4), (5), and (7) for the function ~ imply that axioms APS 6 and 7 are 
fulfilled. 

In an axiomatic foundation of quantum mechanics a dual pair of 
Banach spaces B, B' can be constructed starting from a set M endowed with a 
structure (Q, R0, R) satisfying the axioms APS 1 . . . .  ,7. 

The dual pairing is unique up to isomorphism [cf. Neumann (1972)]. 
Applied to the set M of our model this construction leads back to the Banach 
spaces B and B' spanned by the sets K and L, respectively, which were the 
starting point of the development of the model. This result holds since ~(Q') 
and ~(~)  are dense in K and L, respectively. 

Summarizing the discussion, we have shown that the set of axioms 
concerning the preparing and recording of microsystems given by Ludwig is 
free of contradictions and admits of nontrivial solutions. 
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A P P E N D I X  

Proofoflemma 1: Since H is separable it is easily shown that  there is a 
countable subset Hc = H such that  for  a finite o r thonormal  subset 
{9~}~=, ..... , c H there is an or thonormal  subset {9,},=, ...... = Hc with 
[19~ - 9;1[ < ". Let Cc be a counmble dense set o f  complex numbers.  Let 

f2 = 9 = a~gi �9 aigJc q e Cc, 9t e Hc 
t = 1  

L ~ =  { F =  4=1 ~ )uP,,/A, rational, 0 ~< a i ~ < l ,  ~bt e f~ pairwise o r thogona l}  

L~ = LI u Li is denumerable and satisfies the conditions s i t e d  in the lemma. 
To prove this assertion consider a set S e Mo, i.e., S = {F~},=, ....... F, e L ,  
F~ # 0, )~I'=, F~ = 1, and a ~*-neighborhood U of  0 e B(H). Restricted to L 
the ne ighborhood U can be characterized by q , , . . . ,  ~en e H, ~ > 0. Let 
9,  . . . . .  9~ be an or thonormal  base o f  the subspace Htr o f  H spanned by 
r  ~,~ and let P be the corresponding or thogonal  projection. We have 
PF~P = Y~Lt A~DP,,~ with 0 ~< A~ D ~< 1 and {~b~D}p= , ..... ~, = Htr. There is an 
or thonormal  set {9[}~=, ...... c H~ with ]]9'~ - 9~[1 <~ ",. By means o f  the 
components  o f  the 9~D with respect to the base {9~}~=, ..... m, one defines ~b'~ D e 
f~ with ]]ff~ - ~11 ~< re(e, + 3e~), ~z being a constant  independent o f  ~, 
caused by the fact that  C= is dense in C. Hence 

l i e , , ,  - P, ol -< 2m(,,  + 3,2) 

For  i = 1 . . . . .  n - 1 we define F,' = ~o~=, A~oP,; ~ with A;o rational and 

a,~(1 - ,=) ~< a',, ~< a, , (1  - %/2)  ,= > 0 

and F~ = 1 - ~I ' -#  F;. 
Since the following estimation shows "-*  ' ' ~ = ,  F[ ~< 1, we have Fi e L, for 

i = 1 , . . . ,  n - 1 and F,~ e L~. Considering 9 '  = ~ = ,  cqg',, one obtains 

("-S) Z,=, , 9 / 2  ~< (1 - ,=/2) 9 F,9 + 2=ma,= 

~< 1 - %/2 + 2nm%= 

with 9 = ~7'= 1 aigt. 
Moreover,  t iE;  - P E P  I <- me= + 2m2(E, + 3~2) 

Ft - Ft' e Uq~, ..... q~,~.= for appropriately chosen E,, e2, ,3. 
holds, and hence 
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